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Motivation:

* Decarbonisation to reach climate goals

* Security of energy supply

SAPHEA @

INTEGRATING GEOTHERMAL HEATING
AND COOLING NETWORKS IN EUROPE

3 HEAT SUPPLY BECOMES RENEWABLE — UBA MODEL CALCULATIONS AND SCENARIOS
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Data source: GUNTER, J. et al.: Den Weg zu einem treibhausgasneutralen Deutschland ressourcenschonend gestalten, Umweltbundesamt, (2017)
KLAUS, T. et al.: Energieziel 2050: 100% Strom aus erneuerbaren Quellen, Umweltbundesamt (2010
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Geothermal Systems
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INTEGRATING GEOTHERMAL HEATING
AND COOLING NETWORKS IN EUROPE
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Heating - Cooling Grids
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Industrialized compact

3rd Generation
1980-2010

Pre-insulated pipes

substations

Low energy demands
Smart energy: Optimum
interaction of energy sources,
distribution and consumption

Adopted from Lund et al. (2018) and Wirtz et al. (2020)

4th Generation
2010-2040

5th Generation
> 2020

Bidirectional:

Modular expansion

Heating & cooling supply
Almost no thermal losses
Uninsulated plastic pipes
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,Geothermal” Networks distributed in Europe

Table 1: Statistical KPIs of direct geothermal energy used in heating networks in Europe as for 2019 based on the EGEC
Geothermal Market report 2020 (data source: European Geothermal Energy Council).

Sample
KPI Size P50 P75 . N
Installed capacity (MW) 341 7 14 -
Temperature of ]
production well (°C) 179 72 80 |
Capacity factor (gross
heat / installed capacity
(kh/yr) 234 2,59 3,98 -
o™, \
Source: Goetz| et al., 2022 \,7’
= 364 direct use geothermal DH networks in Europe ~ 5.6 GW capacity { ¢ mry
= Approx. >100 5G networks in Europe linked to geothermal ‘ ' B
technologies Source: EGEC Geothermal Market Report 2021
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Flexibilisation SAPHEA “
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Flexibilisation SAPHEA “

INTEGRATING GEOTHERMAL HEATING
AND COOLING NETWORKS IN EUROPE

Fig. 1. Basic principle of HT-ATES. In summer, the aquifer is charged with surplus heat frc
power-to-heat (¢), industrial heat waste (d) or solar (e). The stored heat is recovered in winte
or industrial applications such as greenhouses (h).
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Combination with Geothermal Sources SAPHEA “
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Goetzl et al. (2020)
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Geothermal Sources + HP + Storage + Networks = Scenarios

SAPHEA @

INTEGRATING GEOTHERMAL HEATING

Source - Temperature

25 °C 70°C 120 °C AND COOLING NETWORKS IN EUROPE
P
Open loop Groundwater ] [ Hydrogeothermal direct use }
A%
4 ™\ - -
Low temperature ’ /
(LT-ATES) [ High Temperature Aquifer Thermal Energy Storage (HT-ATES) }
-
Closed loop BorethIe Heat !Exchanger
(single & fields)
b S
" ™
Borehole Thermal Energy
Storage (BTES)
A vy
p
closed loop systems Petrothemal Enhanced
L (unbalanced) Geothermal Systems (EGS)
- 2
[ Petrothermal Advanced Geothermal Systems (AGS, e.g. Eavor)
J
N
Low Temperature Heat ,
b High Temperature Heat Pump
Pump
v
25°C 70°C 120 °C

Network - Temperature

Dr. Kai Zosseder / GA / 05/12/2023 Page 10




Scenarios for Integrating Geothermal into SAPHEA “

- INTEGRATING GEOTHERMAL HEATING
DHC Networks AND COOLING NETWORKS IN EUROPE

e Basic Scenarios: Basic scenarios are simpler in design and are already commonly used throughout Europe
or in single countries.

e Complex Scenarios: Complex scenarios consist of a combination of different technologies such as storage
scenarios or scenarios using a HTHP, and are already installed in some places.

e Future Developments: Future scenarios are based on technology that is not yet market-ready. These are

especially scenarios using enhanced or advanced geothermal systems (EGS, AGS) or uncommon
combinations.
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Basic Scenarios
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Number Scenario name Type SourceT [°C] Aquifer/ GridT [°C]
ground
Basic scenarios

BO1 Shallow geothermal & Free

cooling - DC Network basic 5-25 aquifer/ground 0-15
B 02 Groundwater + decentral LTHP

- LT Network basic 10 aquifer 10-25
B 03 Hydrothermal Direct Use

- HT Network basic 90 << aquifer 80-120
B 04 Hydrothermal Direct Use

- MT Network basic 40 - 90 aquifer 40 - 60
B 05 Groundwater + central HP

- MT/HT Network basic 10-30 aquifer 25-90
B 06 BHE + central HTHP/BTES

- MT/HT Network basic -4 - 30 ground 25-90
B 07 BHE + decentralized LTHP

- LT Network basic -4 - 25 ground 10
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Complex Scenarios
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Number Scenario name Type SourceT [°C] Aquifer/ GridT [°C]
ground
omplex scenarios

co1 Basic + LT ATES + LT/MTHP

- LT/MT Network complex 30 > Aquifer 40 - 60
C02 Hydrothermal + HTHP

- MT/HT Network complex 30-90 aquifer 60-120
Cco03 Hydrothermal + Sorption

Chiller - DC Network complex 60 - 100 aquifer 6-15
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Future Scenarios

SAPHEA @

INTEGRATING GEOTHERMAL HEATING
AND COOLING NETWORKS IN EUROPE

Number

Scenario name

Type

SourceT [°C]

Aquifer/
ground

\ Future scenarios

GridT [°C]

FO1 Basic + HT-ATES

— MT/HT Network future 90 >> aquifer 90
FO02 Advanced Geothermal Systems

(AGS) future 90 >> ground 90
FO03 Enhanced geothermal system

(EGS) future 90-120 ground 90
FO4 Deep BHE + HTHP

— MT/HT Network future 20-50 ground 90
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Basic Scenarios
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Scenarios

Districtcooling with groundwater

e.g. District Cooling ,, BMW-FIZ*
5 MWth (255 IIs, 8 Mio. m%a)

SAPHEA @

INTEGRATING GEOTHERMAL HEATING
o

AND COOLING NETWORKS IN EUROPE
PUT T
‘*ﬂ : --®’$:~L D ferstr
dsinct cooing Feldmoch ”f‘ ”W:ﬂ.‘ﬂ.‘,&:}.ﬁ., ;
consumer : . ‘ ‘\\
! l \
' l :
n ! | i
technicaly " drect coolng ’I ‘ :
generated cold ‘ , l l
eC ¢ l 1w ¢ 2 "/ . m.
o P | j
n !
‘ '
’ ‘\

‘ .
|
MW : \m
Dt OB |
deve ment car us) -
%_ s ® well

® culvert

culvert or well l

viewin the culvert well

construction of pipeline in 2004

Dr. Kai Zosseder / GA / 05/12/2023

Page 16



Scenarios
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— INTEGRATING GEOTHERMAL HEATING
B 02 |Groundwater + decentral LTHP - LT Network INTEGRATING GECTHERMAL HEATING

T Source
[°cl

10

MUNCHEN-OBERMENZING

Examples Friedbe

Ubersicht iiber alle Bohrungen der Entnahme- bzw. Schluckbrunnen. @ Lage Entnahmebrunnen 3
Quelle: Baugrund Sud ® Lage Schiuckbrunnen
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Scenarios SAPHEA“

i — INTEGRATING GEOTHERMAL HEATING
BO3 |Hydrothermal Direct Use — HT Network INTECRATING GEQTHERMAL HEATING
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Scenarios
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B 04 |Hydrothermal Direct Use — MT Network AND COOLING NETWORKS IN EUROPE

Lendava, Slovenia [10]

Local community Lendava covers 123 km2 in the Pomurje region. In Lendava there is one of the few _

Slovenian geothermal district heating systems. Production borehole Le-2g was drilled in 1994 and
reinjection borehole Le-3g in 2007. At a district heating system with a length of about 3200 m -
school, kindergarten and multi-dwelling houses are connected. The installed capacity is about 2.7
MW The production temperature of the well is 74°C and the operation temperature of the
network is about 40-66 °C.

Morahalom, Hungary [10]

Morahalom has 6 100 inhabitants A geothermal cascade system was developed to reduce
dependency on natural gas by using a renewable heat source. This system consists of two drilled
wells, a 1.26 km-deep outflow well and a 0.9 km injection well. Within the project a new district
heating system of 2.85 km was established to supply public buildings. The GHG emission is now
reduced by 80%. A capacity of 1.5 MW, is produced by the three production wells. The operating
temperature of the district heating network is about 69-40°C. The maximum production
temperature of the wells is about 70°C.

Trnava Sered, Slovakia [10]: about 6 MW?th, about 3760 apartments, Production Temperature
66°C; Operating District Heating temperature: 65°C; combined with natural gas
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Scenarios
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Le réseau de chaleur et de froid de Paris-Saclay @

Research and
educational facilities

Low temperature
exchange network

ing and hot water
mnps for hot water
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eenarios - SAPHEA &

B 06 | BHE + central HTHP/BTES - MT/HT Network AND COOLING NETWORKS IN EUROPE

Drake Landing Solar Community, Okotoks, AB, Canada [18]

The Drake Landing Solar

LANE Solar Collection Loop Sorshole P Community (DLSC) is a master-
XX B X (X <] X XTI D% planned neighborhood in the
o¢ z Town of Okotoks, Alberta, ;T-:"
[ngr”l‘ﬂgmﬂml“;;ld Canada, which is heated by a %
| - e—— v [ sotar Comection Loos district system designed to store }_

ORAKE LANDING COURT % abundant solar energy
E—!ij’i ﬁmmi‘-“—“ underground  during  the
z I—ﬁ’F‘ H IU 'E}“‘E‘l’ summer months and distribute
a0 Sotar the energy to each home for
Moo outobs ealctors space heating needs during

D winter months. One of the first | "

Houses BTES ever built worldwide was | |
- put into operation in 2007. 798
flat plate solar panels produce
heat that is stored underground

by 144 35-m-deep BHEs in oil

..: summer. The BTES extracts rs)
|| energy in winter and provides
:igure 1 COooooooooogs heating and DHW to 52
Figure 13: Example Drake Landing Solar Community, Okotoks, AB, Canada individual houses without HP.

Gas-fired furnaces serve as a

back-up system but solar fraction is always more than 90 %, contributing to overall COP > 30.
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Scenarios
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Silkeborg. Denmark

The 5GDH grid/thermonet
consists of ca. 1340 m
uninsulated PE forward ssic
and return pipes including
the consumer connections ©-8m)
with dimensions @40, @50,
@63 and @90 mm. The
thermonet connects six
120 m long borehole heat
exchangers (BHE) with
single-U @40 mm SDR
probes, and a drilled
diameter of 15.2 cm, to
individual brine-to-water
heat pumps in 15 (14 6kW
and 1 10 kW) family
houses. The annual heating
consumption amounts to
approximately 167 MWh and
SCOP is 3.3 at the system level.

Figure 18: The thermonet at Balle Bygade in Silkeborg with 15
connected consumers. Balle Bygade no. 9 is the existing house built in
1979 (lower center of figure).
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Complex Scenarios
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Scenarios
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c ol Basic + |.T ATES + LT/MTHP - LT/MT Network AND COOLING NETWORKS IN EUROPE

Rostock, Germany [24] Waste heat from
server room
buffer store Soler-colaciors heating circuits b4 %_T 3
1 ‘ ,
[ 1 3 A 5 > Y ? :
Techn 30 m’ Conventional | ok 1% 9 Building  Refrigerant

heating loop _°°_°""_

district heating | é
|
| 4 é S r.@ -

=D o“:';}v_’—p : ql::n { : A
| B . .
: E = —i 7501
gl ‘ij ] ) cold water
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pump 1
cold well § T T— =57 hot well oo
. T Conventional | & [ I Building
= NN = district coolng | | @y ! cooling loop
ATES iy -
- = A J_ °§'°¥ e (Drare
Figure 21: Hydraulic scheme of the installation in Rostock. ° } :

Hdistskon, Sweden
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Scenarios
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¢ 02 | Hydrothermal + HTHP - MT/HT Network AND COOLING NETWORKS IN EUROPE

Standard case of a geothermal heating plant

District heating

network

Return temp.
50°C
2
L
55 °C 15 MW

HTHP application case |: inceasing the
capacity of a geothermal source

1o

EL

Figure 23: Application scenarios
heating plants.
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HTHP application case |l: integrating a

insufficient geothermal source temp.

District heating network
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/2023

yrage

no

ith high

Figure 24: Example of Riehen, Switzerland (Source: [29])
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Expansion of district codling |

expansion west Fernkaltenetz Innenstadt
(central station)
(until 2020)

expansion north (Schwabing

= | ~ 40 Consumers / and east (until 2020)
\\\\\‘
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o

ntil 2022)
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Grid Conditions:
Flow temperature: 6-10°C
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\o Bestandsgebret
’HK\N Sud
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Future Scenarios
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Scenarios
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£ 01 Basic+ HT-ATES — MT/HT Network

T Source [°C] T Grid [°C] TU Delft Delft stad
200T)
75 -90°C
90 << 90
Technology e Possible basic scenarios:
o Hydrogeothermal We 55°C
e Heat exchanger - =T -
e District heating network A
t Summer
320 m*h
750.000 m3
L2 on 16,7 MWt max
| 163 T
163 Tl
ﬁ
il 5o il
< } GT \: ) 4 hot wells 8 warm wells
73-63°C 33-523°C

Figure 29: HT-ATES Scheme of ‘Delﬁ, The Netherlands.
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Scenarios SAPHEA“

INTEGRATING GEOTHERMAL HEATING

fF 02 Advanced Geothermal SYStemS AND COOLING NETWORKS IN EUROPE

Eavor Facility Eavor-Loop™ Overview
Eavor-Loop™ | Eavor-Loop™

&TestLab — ] & Application
PP Parameter | Eavor-Lite™ 1.0 2.0

EL1.0 >25°C/km >30°C/km > 45°C/km Angle X 90°* 90* 160° to 180°

o~/ < OEe > 40°C/km [
EL20 >20°Clkm >25°Clkm > 25°C/km (Germany) Rock Type Sedimentary Sedimentary Igneous

Other Considerations

Faulting Eavor needs to avoid, or drill parallel to, active/major faults Eavor-Lite™

2019
Eavor needs to be confident that the rock in the radiator

Sealing
ool section can be properly sealed

Source Modelling the subsurface determines the power or heat
Potential capacity of the geothermal license

9 s8”

Radlator SeCtiOn 1*t Commercial Project
2022

///
//// Proof of Concept
2022

Note: A - E Flow Direction : \/
) Figure 31: Eavor-Loop™

Figure 30 Eavor-Lite (Prototype)
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Scenarios
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FO3 Enhanced geothermal system (EGS) AND COOLING NETWORKS IN EUROPE

L)
@ .
- | .
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= s N
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§ gl ) : production well
high-permeability/® & | ) 2 production well '
reservoir conventional = ] -
= geothermal c Ic i
=< '
E v + g‘;‘ ] '
= =3 [
° o2 '
T |impermeable 20 '
? 3 -
£ | reservoir m °s v
! Py 3o : joint system
w gg '
o L)
© - & g 2 '
= 2
E § 2 B8 = :
] = E: g ~
L — o = —.
© i o E] '
) = 22 o .
o 3 35 3 -
= = -3 w -
o W w
o -_ o M
= . '
S HDR-concept +
2 v 2l EGS-concept

- | ~hydrothermal with excellent storage capacity
II -hydrothermal with poor storage capacity
[lI-HDR with excellent storage capacity
IV-HDR with poor storage capacity
V -HDR with no storage capacity
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Conclusion

* Several Opprtunities to integrate Geotheraml into DHC Networks SAPHEA “

e All depending on the local situation at the surface and the subsurface: I AR LERMAL HEALIES

Which sources are available, which heat/cool demand must be covered

Source - Temperature

25°C 70°C 120 °C
P
Open loop Groundwater 1 [ Hydrogeothermal direct use 1
o
e ™\ LI i
Low temperature / /
(LT-ATES) [ High Temperature Aquifer Thermal Energy Storage (HT-ATES)
p
Closed loop BorethIe Heat !Exchanger
(single & fields)
p
Borehole Thermal Energy
Storage (BTES)
P
closed loop systems Petrothemal Enhanced
(unbalanced) Geothermal Systems (EGS)
|

[ Petrothermal Advanced Geothermal Systems (AGS, e.g. Eavor)

Low Te H
[ ow emgii?];ure eatI lHighTemperature Heat Pump ]

"

25°C 70 °C 120°C
Network - Temperature
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Thank youl!

Get in contact with us:
www.saphea.eu

Ohy:0
g O

Dr. Kai Zosseder

Technical University of Munich
kai.zosseder@tum.de
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