# Analysis of the economic and ecological feasibility of district heating in a deeply renovated housing estate using THERMOS

Richard Büchele, 04.04.2024





## Agenda

- Introduction to case study
- Aim of the study
- Method
- Scenario and input data
- Results
- Findings



# Introduction to case study

- Housing estate "Südtirolersiedlung" in city of Bludenz
  - Built between 1943 and 1962
  - 80 buildings (mainly multi family houses) with 397 flats
  - energetically almost in original condition (except windows changed in 80s)
  - $\approx 24.000 \text{ m}^2$  living space on  $\approx 63.000 \text{ m}^2$  land area
  - Low rents and low income
  - Mostly heated with individual stoves, no central heat distribution system (Biomass, Oil, Electricity, few gas connections)
  - Hot water via electric boiler







# Aim of study

 Analyse if the housing estate is suitable (economic/ecological advantages) for supply via a heating network (in comparison to decentral heat pumps) after extensive renovation options have been carried out?



## Method

- Detailed analysis and calculation for the refurbishment of two demonstration buildings
  - Calculation of refurbishment options with PHPP
    <u>https://passivehouse.com/04\_phpp/04\_phpp.htm</u>
  - Simulation of load profiles with IDA ICE
    https://www.equa.se/en/ida-ice
- Demonstration building data mapped to building shapes and streets attributed with QGIS <a href="https://qgis.org/en/site/">https://qgis.org/en/site/</a>
- Calculation of optimal network design and supply optimization

#### with Thermos Tool

https://tool.thermos-project.eu/









## **Scenario and input data - buildings**

- Three areas with two energetic qualities
  - Delivered Energy (heat @ exchanger)

| Area                  | Very high quality Q1 |         | High quality Q2        |         |  |
|-----------------------|----------------------|---------|------------------------|---------|--|
| Historically valuable | 85 kWh/m²            | 33 W/m² | 100 kWh/m <sup>2</sup> | 39 W/m² |  |
| Partly valuabla       | 65 kWh/m²            | 25 W/m² | 85 kWh/m²              | 33 W/m² |  |
| New buildings         | 45 kWh/m²            | 17 W/m² | 55 kWh/m²              | 21 W/m² |  |

#### • Two densification scenarios

| Area                  | Slightly densification V1                | Higher densification V2     |  |  |  |
|-----------------------|------------------------------------------|-----------------------------|--|--|--|
| Historically valuable | No densification                         |                             |  |  |  |
| Partly valuabla       | Additional living space in attic (≈+10%) |                             |  |  |  |
| New buildings         | Additional floor (≈+10%)                 | High densification (≈ +50%) |  |  |  |

#### • Overall area

| Indikato                                 | Min heating demand (Q1V1) | Max heating demand (Q2V2) |
|------------------------------------------|---------------------------|---------------------------|
| Floor area (act. 25 300 m <sup>2</sup> ) | 27 176 m²                 | 29 458 m²                 |
| Heating demand                           | 1.77 GWh/a                | 2.35 GWh/a                |
| Heat load                                | 680 kW                    | 900 kW                    |





## Scenario and input data – **network & supply**

| ALL                                                       |
|-----------------------------------------------------------|
|                                                           |
| 1                                                         |
|                                                           |
|                                                           |
| 184 G                                                     |
|                                                           |
|                                                           |
|                                                           |
| V2_10e                                                    |
| ٤/ <sub>MWh</sub>                                         |
| 2 €/ <sub>MWh</sub>                                       |
| ٤/ <sub>MWh</sub>                                         |
|                                                           |
|                                                           |
|                                                           |
| 100                                                       |
|                                                           |
|                                                           |
|                                                           |
| V2_1<br>electrolype<br>\$/mwh<br>  2 \$/<br>\$/mwh<br>100 |

(\*) monthly CO<sub>2</sub> factors from Ploß et. al 2022 http://www.energieinstitut.at/pdfviewer/Low-Cost-nZEB-2022



Network costs (per dimension and surface) taken from Handbook on Planning of District Heating Networks https://www.verenum.ch/index QMDH.html

- Main pipes in streets (hard ground) ٠
- House connection pipes in field (soft ground)
- Cost and technology data for heat supply from Danish Technology catalogue (DEA)
  - Investment and dispatch optimization with 3 . fictitious producer technologies + storage
  - 2 type-days per month from hourly load profiles
- Fictitious heat supply location



#### **Results**

| Network results                   | Unit       | Q1V1_wc | Q1V1_ref | Q2V2_ref | Q2V2_BAT<br>Best Available Technology |
|-----------------------------------|------------|---------|----------|----------|---------------------------------------|
| Network length                    | [m]        |         | 1890     |          |                                       |
| Supplied Energy                   | [GWh/yr]   |         | 1,71     | 2,26     |                                       |
| notwork losses                    | [GWh/yr]   | 0,26    | 0,18     | 0,19     |                                       |
| The two is to sees                | [%]        | 13%     | 10%      | 8%       |                                       |
| Total capital cost network (40yr) | [Mio. EUR] | 2,97    | 2,96     | 3,04     | 2,86                                  |
| Total O&M cost network (40yr)     | [Mio. EUR] | 0,24    | 0,23     | 0,29     | 0,29                                  |
| LCH distribution                  | [c/kWh]    | 4,68    | 4,67     | 3,68     | 3,48                                  |
| $(O_{1} (numping))$               | [t/yr]     | 4,87    | 4,68     | 6,06     | 6,06                                  |
|                                   | [g/kWh]    | 2,47    | 2,48     | 2,47     | 2,47                                  |

| Supply results            | unit       | Q1V1_wc | Q1V1_ref | Q2V2_ref | Q2V2_BAT<br>Best Available Technology | Q2V2_11f<br>11c feed in electricity | Q2V2_10e |
|---------------------------|------------|---------|----------|----------|---------------------------------------|-------------------------------------|----------|
| HOB Wood chip capacity    | [GWh/yr]   | 338     | 333      | 444      | 442                                   | 174                                 | 56       |
| CHP Wood chip capacity    |            | 0       | 0        | 0        | 0                                     | 268                                 | 0        |
| HP Air source capacity    |            | 0       | 0        | 0        | 0                                     | 0                                   | 386      |
| Storage capacity          |            | 243     | 260      | 304      | 314                                   | 314                                 | 314      |
| Storage in-out capacity   |            | 100     | 100      | 100      | 100                                   | 100                                 | 100      |
| Total capital cost (40yr) |            | 0,64    | 0,63     | 0,83     | 0,68                                  | 0,84                                | 1,24     |
| Total opex cost (40yr)    |            | 0,81    | 0,79     | 1,05     | 0,87                                  | 0,90                                | 0,4      |
| Total fuel cost (40yr)    | [GWh/yr]   | 4,39    | 4,21     | 5,46     | 4,42                                  | 5,70                                | 3,36     |
| Total el revenues (40yr)  | [%]        | 0       | 0        | 0        | 0                                     | 1,60                                | 0        |
|                           | [m]        |         |          |          |                                       |                                     |          |
| heat production           | [Mio. EUR] | 1,96    | 1,88     | 2,44     | 2,44                                  | 2,58                                | 2,45     |
| LCH produced              | [Mio. EUR] | 7,45    | 7,49     | 7,52     | 6,13                                  | 5,66                                | 5,09     |
| LCH supplied              | [c/kWh]    | 8,54    | 8,23     | 8,12     | 6,60                                  | 6,46                                | 5,53     |
| CO <sub>2</sub> (supply)  | [t/yr]     | 22      | 21       | 27       | 22                                    | 29                                  | 192      |
|                           | [g/kWh]    | 11,22   | 11,17    | 11,07    | 9,02                                  | 11,24                               | 78,37    |



- Higher network temperature (Q1V1\_wc)
  → higher losses, same distribution costs, higher LCOH supplied
- More energy supplied due to lower thermal standard (Q2V2\_ref)
  → same losses, lower distribution costs, same LCOH supplied
- Better technology assumptions (Q2V2\_BAT)
  → lower LCOH distribution and supply
- 1c higher el. feed in tariff of 11c/kWh (Q2V2\_11f)
  → makes CHP feasible and leads to lower LCOH supplied
- Low electricity price of 10c/kWh (Q2V2\_10e)
  → makes HP feasible and leads to lowest LCOH supplied



# **Findings**

- Supply via district heating seems feasible despite high energetic quality of buildings
  - Levelized distribution costs 3.5 4.7 c/kWh
  - Higher uncertainty of generation costs 5.5-8.5 c/kWh
  - No invest subsidies included
- Similar range than decentral supply via individual heat pumps
  - $\rightarrow$  non-monetary aspects may be decisive



DI Dr. Richard Büchele Energieeffizientes Bauen Energieberatung und Gebäudetechnik Energieinstitut Vorarlberg Campus V / Stadtstrasse 33 6850 Dornbirn, Austria T +43 5572 31 202 - 57 richard.buechele@energieinstitut.at www.energieinstitut.at

