

Ollscoil na Gaillimhe University of Galway

District heating assessment for University of Galway Campus. (Act!onHeat support facility)

Luis M. Blanes / Marcus M. Keane / Michael M. Curran Date: 04/04/2024

This work includes results from the THERMOS heat network model (https://www.thermos-project.eu). For more information about THERMOS contact the Centre for Sustainable Energy (https://www.cse.org.uk).

University ofGalway.ie

Summary

- 1. DHC Ireland policy
- 2. DHC Options in Ireland
- 3. University of Galway DH Pilot
- 4. District Heating Plan EXCEED 2025/2026
- 5. Alice Perry Engineering Building / GEOFIT
- 6. THERMOS workflow
- 7. THERMOS demand estimation
- 8. Network Problem
- 9. DH Network Temperature Discussion
- 10. Conclusion and Next Steps

DHC Ireland policy

- > NATIONAL HEAT STUDY
- ▶ NET ZERO by 2050
- DISTRICT HEATING AND COOLING Spatial Analysis of Infrastructure Costs and Potential in Ireland
- > Policy Framework for the Development of District Heating in Ireland Submission 2020.pdf
- > Policy Framework for the Development of District Heating in Ireland 2020 REI Submission.pdf
- \succ The effect of Part L Building on the District Energy sector in Ireland 2020.pdf
- > DH Can Supply the Heat for 10 % Ireland by 2030 and Save Almost 1 Mt CO2 per Year 2020.pdf
- Call for Expert Evidence Climate Action Plan 2021 2020.pdf
- Best Practice In Heat Network.pdf
- IrDEA Heat Atlas Overview.pdf
- > Transition Roadmap for Developing District Heating in South Dublin 2019 Codema.pdf
- > Eastern and Midland Regional Assembly Draft Regional Spatial and Economic Strategy Sub. 2019.pdf
- > Developing District Heating in NorthcWest Europe 2019.pdf
- Initial Public Consultation National Energy and Climate Plan 2021 2030 2018.pdf
- IDEA Kick-off Workshop 26th January 2018.pdf

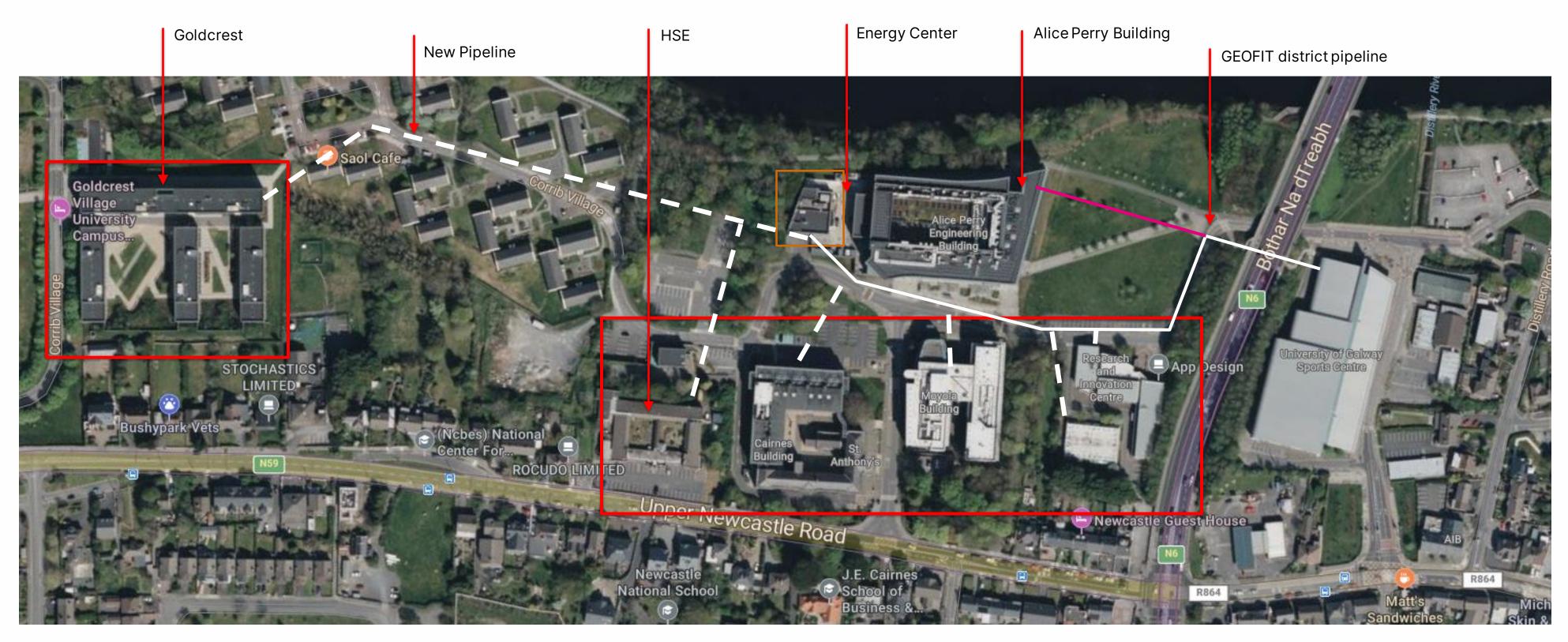
Source: https://districtenergy.ie/policy

DHC Options in Ireland

 \geq Option 1 – Heat extraction from power stations and industrial waste heat recovery (including data centres)

- \succ Option 2 Biomass boiler
- > Option 3 Biomass CHP with biomass boiler back-up
- \succ Option 4 Air source heat pump (ASHP)
- > Option 5 Ground source heat pump (GSHP)
- > Option 6 Low-carbon gas CHP
- \succ Option 7 Geothermal at depths up to 400 m

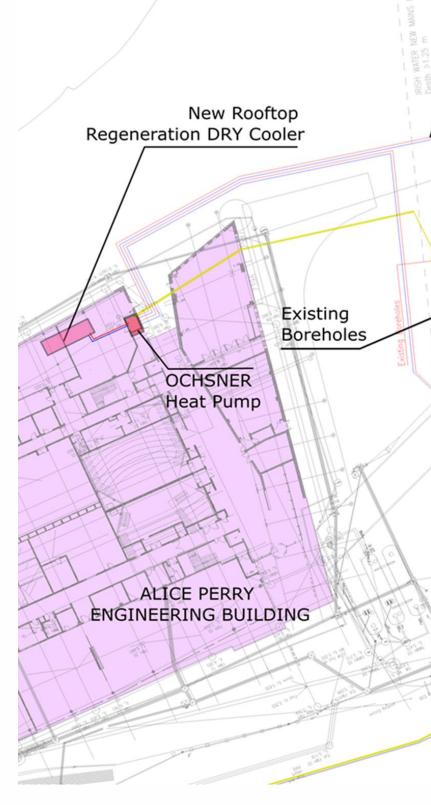
Source: DISTRICT HEATING AND COOLING - Spatial Analysis of Infrastructure Costs and Potential in Ireland


University of Galway DH pilot

- > **Develop** the University of Galway central campus case study in THERMOS; Compare the THERMOS Demand Estimation with other Estimation
- methods;
- Run the Network problem and size the supply, and Supply Problem in an iterative process;
- Compare of Two Case Scenarios: (1) Gas based system with 90-70 deg.C Delta T and (2) HP system with 60-40 deg.C Delta T; > Academic value of Thermos as teaching tool for current MSc Energy
- modules;
- \succ Support the EXCEED Grant application. (3M certified Grant Scheme);

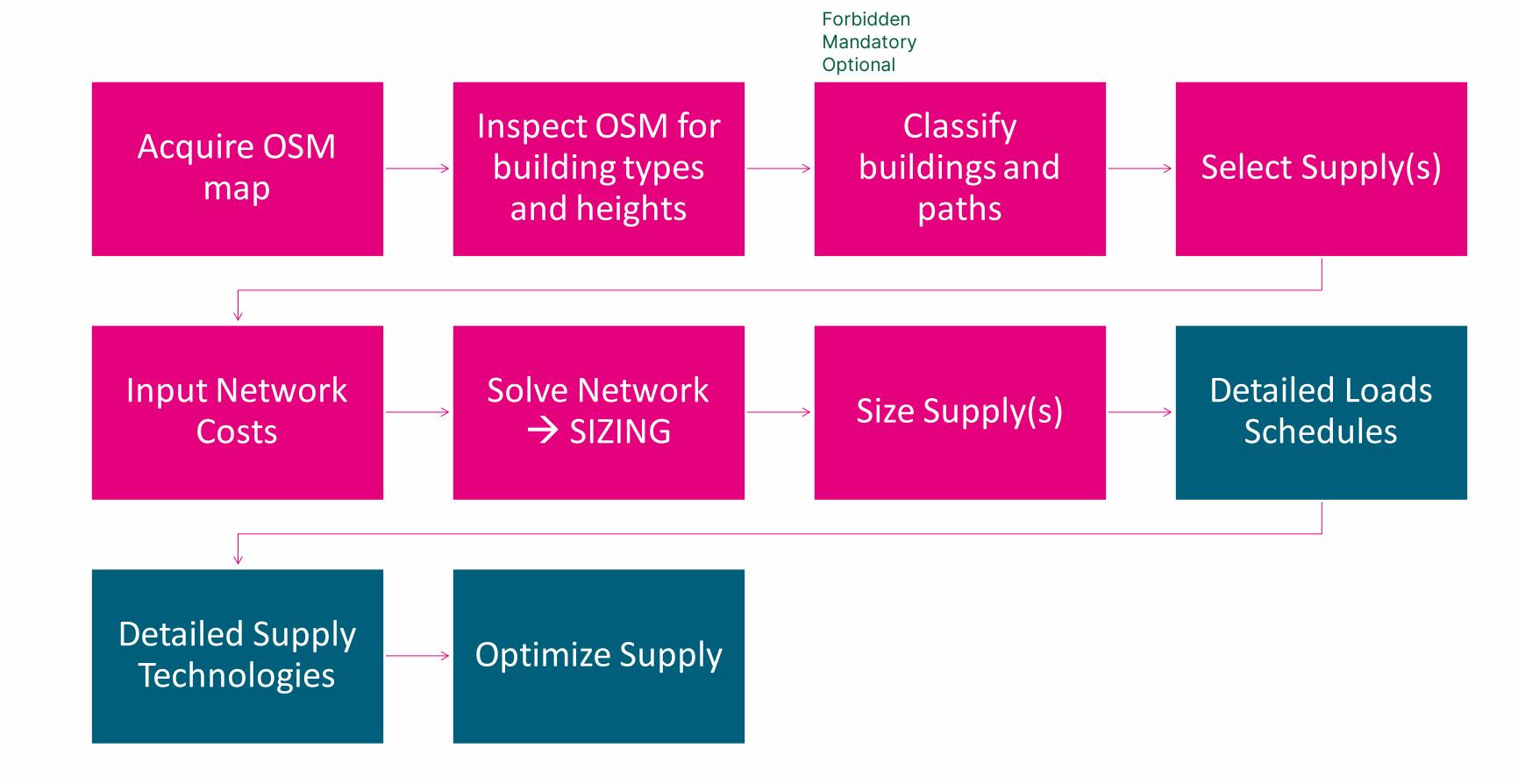
District Heating Plan <u>EXCEED</u>⁽¹⁾2025/2026

(1) Excellence in Energy Efficient Design



Ollscoil na Gaillimhe University of Galway

Alice Perry Engineering Building / GEOFIT


- > 18 boreholes 150 m. Depth
- > Air/Ground source HP (2x50kW OCHSNER)
- Downhole equipment (DTS)
- District Heating pipeline
- > IEA TCP-HPT ANNEX 52 instrumented
- > IEA TCP-HPT ANNEX 60 case study
- > SQL database
- Teaching demonstrator

Adapted from: Geothermal Webinars 2023. Webinar 3: GEOFIT Heat Pump Pilot, University of Galway. https://youtu.be/oKyiiKr7Tvw?si=-vV1532TJYiK-DIv New Underground Pipeline Existing Pipeline New Connection Chamber **KINGFISHER NUIG** Ground Monitoring SEIA proposal Site 1 17 Boreholes

THERMOS Workflow

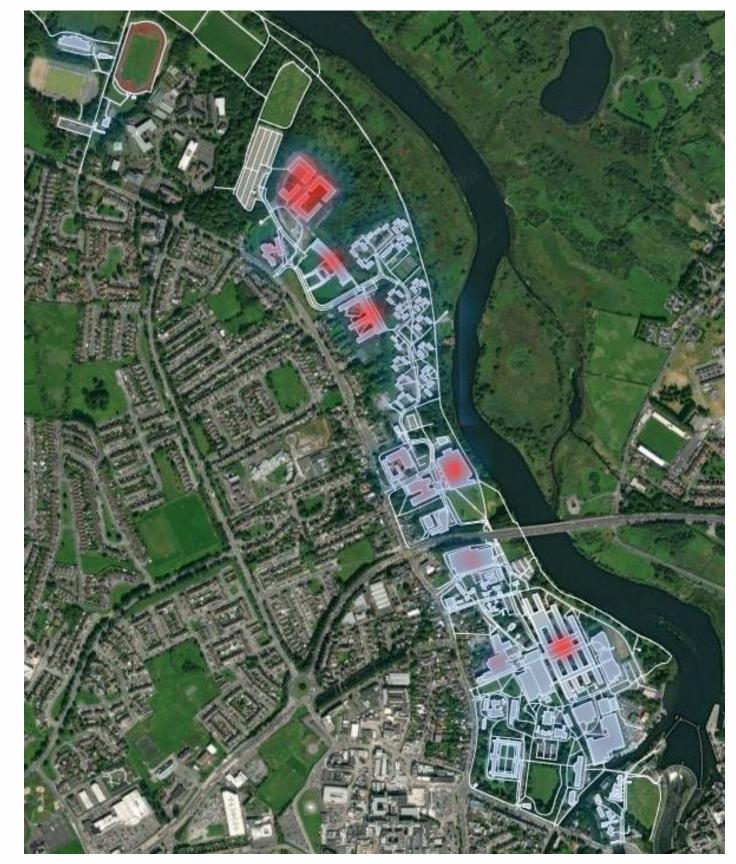
 $\frac{Ollscoil NA Gaillimme}{University of Galway}$

THERMOS Demand Estimator

Space Heat Demand

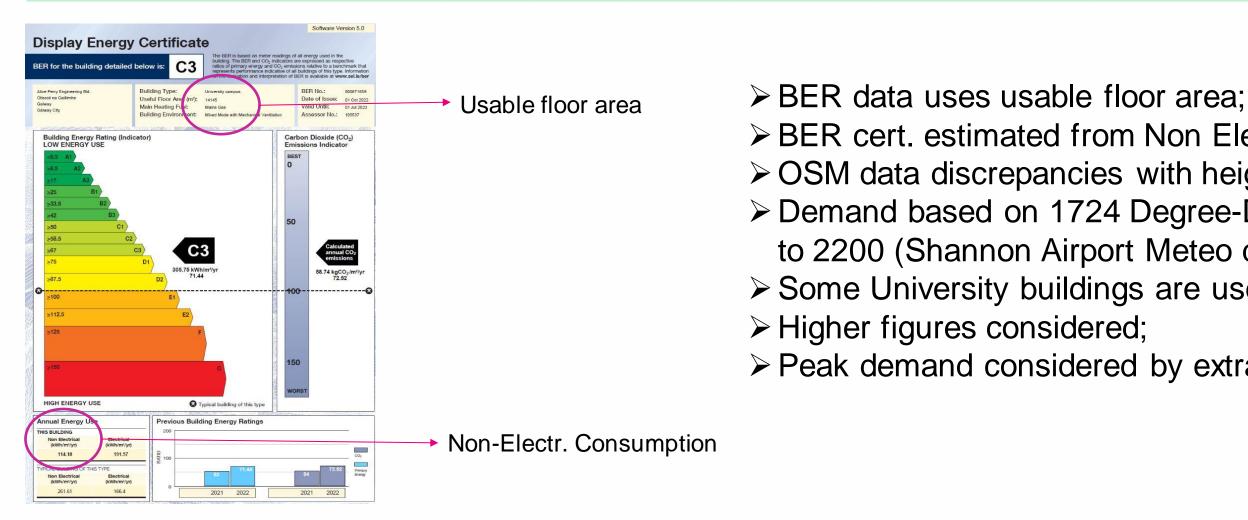
- Based on regression models (LM, SVM). Trained on Copenhangen dataset (polygons, metered demand, and others).
- A number of tested datasets depending on 3D and 2D data some models have better fits
- Better fit for urban areas, worse for rural areas

Peak demand :


- ➢ kWp=0.0004963×kWh/yr+21.84
- \succ This relation is a regression fitted to a large sample of published UK half-hourly domestic gas consumption data.

Best is to have BER data, or even better metered data, as all buildings input can be overridden.

BUT what happens if we have 100s of buildings or lots different types of uses.?

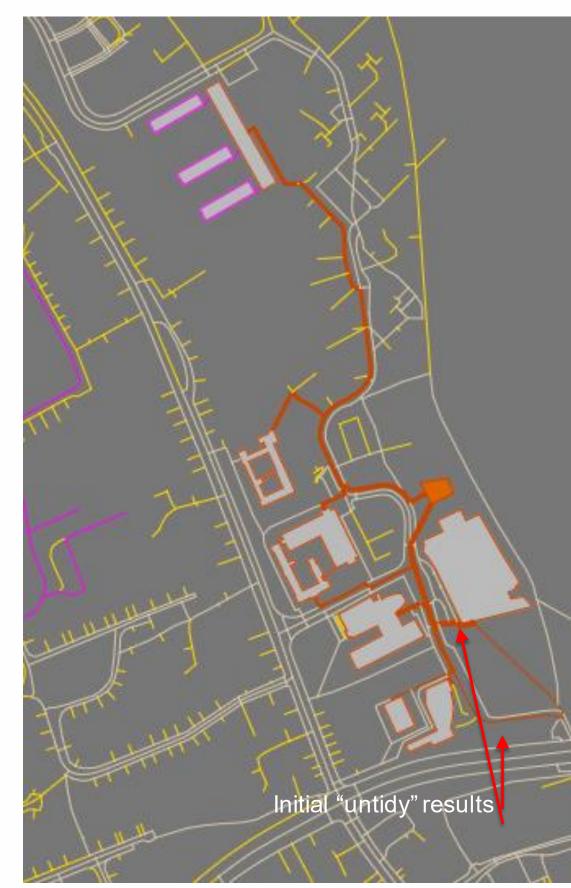


Ollscoil na Gaillimhe UNIVERSITY OF GALWAY

Demand Estimation

Building	height	Supply	Demand	m2	Archetype (B-C) (kwh/m2*annum)				THERMOS PEAK (kWp)
Energy Centre	5	Y	Ν	N/A					
Alice Perry Building	16	Y	Y	14,145.00		114.18	1,615.08	1002.25	528.84
Goldcrest Village	18		Y	13,050.00	80		1,044.00	897.25	532.67
HSE St. Francis	4		Y	1,400.00	150	\frown	210.00	384.76	218.80
Aras Cairnes	16		Y	7,213.00		39.11	282.10	402.94	221.82
St. Anthonys	12		Y	2,800.00	\sim	39.11	109.51	265.76	153.74
Aras Moyola	16		Y	9,500.00	150	\backslash \smile	1,425.00	576.07	307.74
Research & Innovation	8		Y	2,800.00	150		420.00	299.72	170.59
Business & Innovation	3		Y	600.00	150		90.00	124.48	83.62
							5,195.68	3953.23	

Ollscoil na Gaillimhe UNIVERSITY OF GALWAY


> BER cert. estimated from Non Electricity Consumption;

> OSM data discrepancies with height, number of levels and usable areas; Demand based on 1724 Degree-Days (Eurostat) at 17 Deg C but corrected to 2200 (Shannon Airport Meteo data). Sometimes it gives 2800 (error??) > Some University buildings are used less intensively. Worth considering?;

 \geq Peak demand considered by extrapolation.

Network Problem

 $\frac{Ollscoil NA Gaillimme}{University of Galway}$

Option 1 - Maximize network NPV

In this mode, the goal is to choose which demands to connect to the network so as to maximize the NPV for the network operator. This is the **sum of the revenues** from demands **minus the sum of costs** for the network.

The impact of non-network factors (individual systems, insulation, and emissions costs) can be accounted for using the market tariff, which chooses a price to beat the best non-network system.

Option 2 - Maximize whole-system NPV

In this mode, the goal is to choose how to supply heat to the buildings in the problem (or abate demand) at the minimum overall cost. The internal transfer of money between buildings and network operator is not considered, so there are no network revenues and tariffs have no effect.

The whole system NPV will always be negative, because the model only displays costs - the benefit is in terms of delivered heat, which is assumed to be a non-negotiable good desirable at any price.

- Connection Cost 75k € per building
- Civil Cost 225 €/m
- Pipe Cost 76 to 270 €/m
- Initial supply sizing results: **1.22 MW**
- Demand Coincidence: 66%
- Some connections are redundant and include unnecessary loops
- Maximum size 100 mm diam.

Discussion: 90-70^o C Vs. 60-40^o C

Cost sum

Item	Capital cost (¤)	Operating cost (¤)	Operating revenue (¤)	LCH (c/kWh)'	NPV (¤)
Pipework	524.25 k				-401.67 k
Heat supply	0	1.21 M			-721.4 k
Demands	2.25 M		7.63 M		3.2 M
Emissions		0			0
Network	2.78 M	1.21 M	7.63 M	2.72	2.08 M
Emissions		0			0
Individual Systems		0	Cause Network (heat)	co2 t/yr 825.18	0
Insulation			Network (pumping)	0	
Whole system	2.78 M	1.21 M	Total	825.18	-2.46 M
atal cast aurors			Counterfactual	0	
otal cost summa	ary		Net	825.18	

Supply technologies								
Item	Capex	Opex	Fuel	Export	Emissions	Total	PC	
	^{IX} TOTAL	TOTAL	TOTAL	BTOTAL	P TOTAL	TOTAL	¤PV	
Gas Boiler 1.5 MW	100 k	120 M	5.11 M		0	125.21 M	69.23 M	
Total	100 k	120 M	5.11 M		0	125.21 M	69.23 M	

Gas Boilers

Cost summary Network Individual systems Insulation Emissions Optimisation

Ollscoil na Gaillimhe UNIVERSITY OF GALWAY

Water Source HP

nmary	Network	Individ

lual systems Insulation Emissions Optimisation

Item	Capital cost (¤)	Operating cost (¤)	Operating reven	ue (¤) LCH (c/kWh)'	NPV (¤)
Pipework	554.8 k					-425.09 k
Heat supply	1.47 M	1.18 M				-1.83 M
Demands	2.25 M		7	7.63 M		3.2 M
Emissions		0				0
Network	4.28 M	1.18 M	7	.63 M	3.97	940.53 k
Emissions		0				0
Individual Systems		0	Cause	co2 t/yr		0
Insulation			Network (heat)	412.67	0	
Whate custom	4.28 M	1.18 M	Network (pumping)	0	0	-3.6 M'
Whole system	4.20 M	1.10 M	Total	412.67	0	-3.0 M
			Counterfactual	0	0	
fotal cost sumn	nary		Net	412.67	0	

Supply technologies									
Item	Capex	Opex	Fuel	Export	Emissions	Total	PC		
	^{IZ} TOTAL	TOTAL	^{III} TOTAL	TOTAL	TOTAL	TOTAL	¤PV		
WSHP	1 M	120 M	7.49 M		0	128.49 M	71.45 M		
Total	1 M	120 M	7.49 M		0	128.49 M	71.45 M		

Conclusions and Next Steps

- Do demand estimation from actual metered data whenever possible;
- \succ OSM data good for perimeter and paths;
- \succ OSM data used for demand estimation is uncertain (stories, height);
- \succ Economics of heat generation is uncertain. Data based on heat studies does not usually match reality (higher construction costs). At a design stage cost of new supply is uncertain for the average practitioner;
- \succ CAPEX and OPEX cost ratios are difficult to workout;
- \succ Construction costs in depth;
- Comparative with SEAI National Heat Study sources and levelized costs.
- \succ Hydronic design and operation in depth;
- \succ Counterfactual for EXCEED application;

Thank you

Acknowledgements to:

- Gabor Molnar Engineering (Civil Engineering)
- Act!onHeat support facility: John-Dennis Javien, Juan Varo Lopez and Luis Diez Garcia-Valdecasas of CREARA consultores
- University of Galway Buildings and Estates team.

